【象棋逻辑】小谈象棋逻辑问题 之 公平

2017年10月08日 18:28:36 | 来源:搜狐体育

字号变大| 字号变小

  五、公平 我们先来欣赏一个朋友的“高论”: 1、对历年来同级别比赛5000盘的统计表明:先胜占42.1%、后胜占26.7%、和棋占31.2%,简单表示为(42.1、26.7、31.2);

  2、而每个级别之间还出现一种现象:胜率与级别等级成反比,也就是说,级别越低的比赛,胜率越高,和棋机会减少(47.7、32.6、19.7);级别越高的比赛,胜率越低,和棋机会增加(36.4、25.1、38.5); 3、由此可见,当象棋水平提高到终极级别的时候,也就是当先后手方均难出错的时候,胜率将趋向于零,和棋就是结果(0、0、100)! 我们先不要指出这个“高论”错误的推理过程,先假定它是正确的。 既然是“不出错就和棋”,那么,双方对弈实际就是在等对方出错,看谁先出错,而实际上每方出错的机会是均等的,因此,理论上先手会因为先行一步而增加先出错的机会。所以,后手占便宜。

  大家看看,本来是考虑要不要限制先手的,现在却居然有了“后手便宜”的结论! 奇怪吗?一点也不奇怪! 如果你无法证明“和棋结果”是真命题的话,也就无法证明“后手便宜”是个伪命题。回头再看看那个“高论”的证明过程,犯的是“穷举法”初学者的经典错误。 实际上,“先手必胜”与“和棋结果”一样,目前也未被证明。 而正是由于“先手必胜”与“和棋结果”未被证明,使得“后手便宜”成为可能,只是大家大多数都不愿意往这个方向思考而已。习惯的思维方式是,在先手没有限制的情况下,后手是处于劣势的,那又何来的“后手便宜”?但是我要问,既然你无法提出限制先手的依据,也无法证明和棋,又怎能说后手不能占便宜呢? 我忽然有一个想法,也许问题的根源就在于:当双方各十六个棋子都点、线对称的摆在棋盘上的时候,我们并不知道这种摆法是不是对双方最公平,因此,由这个不知道是不是公平的棋盘所引出的相关推论将不成立。 真的是这样吗?

  http://sports.sohu.com/20171008/n516565602.shtmlsports.sohu.comtrue 阅读(0)

下载荔枝新闻APP客户端,随时随地看新闻!

我要说两句

layer
快乐分享